Functional and cellular consequences of covalent target protein modification by furan in rat liver
Male
0301 basic medicine
0303 health sciences
Proteins
Rats, Inbred F344
Rats
Succinate Dehydrogenase
03 medical and health sciences
Adenosine Triphosphate
Liver
Animals
Metabolomics
RNA, Messenger
Chemical and Drug Induced Liver Injury
Furans
Glycolysis
Protein Processing, Post-Translational
Metabolic Networks and Pathways
DOI:
10.1016/j.tox.2016.06.018
Publication Date:
2016-07-09T17:54:42Z
AUTHORS (3)
ABSTRACT
Furan hepatotoxicity is thought to be linked to covalent binding of its reactive metabolite, cis-2-butene-1,4-dial, to hepatic proteins critical for cell homeostasis and survival. We previously identified 61 putative furan target proteins, which participate in various cellular processes including carbohydrate metabolism, fatty acid β-oxidation, adenosine triphosphate (ATP) synthesis, protein folding and maintenance of redox homeostasis. To further investigate the biological significance of target protein modification, this study was designed to determine the impact of furan on the activity of key target enzymes involved in glycolysis, β-oxidation, ATP synthesis, and redox regulation in rat liver, and to link these functional changes to alterations in cellular processes. While cis-2-butene-1,4-dial inhibited thioredoxin 1 (Txn1) in a cell-free assay, in livers of rats treated with a single high dose of furan Txn1 activity was markedly increased due to rapid up-regulation of Txn1 mRNA expression. Significant inhibition of glyceraldehyde-3-phosphate dehydrogenase and metabolic changes consistent with blocked glycolytic breakdown of glucose were observed in rat liver in response to a single high dose of furan. In contrast, furan treatment resulted in increased activity of enoyl-CoA hydratase and enhanced production of ketone bodies, indicative of increased utilization of fatty acids as energy source. Consistent with changes in TCA cycle metabolites, furan treatment resulted in a reduction of succinate dehydrogenase activity, supporting mitochondrial dysfunction as a critical event in furan toxicity. No significant changes in target protein function were observed following repeated administration of furan at lower dose (0.1 and 0.5mg/kg bw for 4 weeks) closer to estimated human exposure to furan via food. Although the relative contribution of furan mediated alterations in metabolic pathways and antioxidant defense to the overall toxic response to furan, including considerations of dose and time, remains to be established, our work contributes to mapping biological processes and toxicity pathways modulated by reactive electrophiles.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....