An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography
Scanning probe microscopy (SPM)
0301 basic medicine
0303 health sciences
03 medical and health sciences
Ultramicrotomy (UMT)
Scanning probe nanotomography (SPNT)
Fluorescent magnetic microspheres
Optical microspectroscopy
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
Optical-probe nanoscopy
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
540
543
DOI:
10.1016/j.ultramic.2017.06.022
Publication Date:
2017-06-21T16:47:00Z
AUTHORS (10)
ABSTRACT
In the past decade correlative microscopy, which combines the potentials of different types of high-resolution microscopies with a variety of optical microspectroscopy techniques, has been attracting increasing attention in material science and biological research. One of outstanding solutions in this area is the combination of scanning probe microscopy (SPM), which provides data on not only the topography, but also the spatial distribution of a wide range of physical properties (elasticity, conductivity, etc.), with ultramicrotomy, allowing 3D multiparametric examination of materials. The combination of SPM and ultramicrotomy (scanning probe nanotomography) is very appropriate for characterization of soft multicompound nanostructurized materials, such as polymer matrices and microstructures doped with different types of nanoparticles (magnetic nanoparticles, quantum dots, nanotubes, etc.), and biological materials. A serious problem of this technique is a lack of chemical and optical characterization tools, which may be solved by using optical microspectroscopy. Here, we report the development of an instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography in a single apparatus. This approach retains all the advantages of SPM and upright optical microspectroscopy and allows 3D multiparametric characterization using both techniques. As the first test of the system developed, we have performed correlative characterization of the morphology and the magnetic and fluorescent properties of fluorescent magnetic microspheres doped with a fluorescent dye and magnetic nanoparticles. The results of this study can be used to obtain 3D volume images of a specimen for most high-resolution near-field scanning probe microscopies: SNOM, TERS, AFM-IR, etc. This approach will result in development of unique techniques combining the advantages of SPM (nanoscale morphology and a wide range of physical parameters) and high-resolution optical microspectroscopy (nanoscale chemical mapping and optical properties) and allowing simultaneous 3D measurements.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (28)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....