Formulation and characterisation of drug-loaded antibubbles for image-guided and ultrasound-triggered drug delivery

Targeted drug delivery 0303 health sciences Microbubbles Short Communication Acoustics. Sound QC221-246 610 Contrast Media Antibubble 3. Good health Chemistry 03 medical and health sciences Drug Delivery Systems Sonoporation Ultrasound Nanoparticles Emulsions QD1-999 Ultrasonography
DOI: 10.1016/j.ultsonch.2022.105986 Publication Date: 2022-03-23T07:08:16Z
ABSTRACT
The aim of this study was to develop high load-capacity antibubbles that can be visualized using diagnostic ultrasound and the encapsulated drug can be released and delivered using clinically translatable ultrasound. The antibubbles were developed by optimising a silica nanoparticle stabilised double emulsion template. We produced an emulsion with a mean size diameter of 4.23 ± 1.63 µm where 38.9 ± 3.1% of the droplets contained a one or more cores. Following conversion to antibubbles, the mean size decreased to 2.96 ± 1.94 µm where 99% of antibubbles were <10 µm. The antibubbles had a peak attenuation of 4.8 dB/cm at 3.0 MHz at a concentration of 200 × 103 particles/mL and showed distinct attenuation spikes at frequencies between 5.5 and 13.5 MHz. No increase in subharmonic response was observed for the antibubbles in contrast to SonoVue®. High-speed imaging revealed that antibubbles can release their cores at MIs of 0.6. In vivo imaging indicated that the antibubbles have a long half-life of 68.49 s vs. 40.02 s for SonoVue®. The antibubbles could be visualised using diagnostic ultrasound and could be disrupted at MIs of ≥0.6. The in vitro drug delivery results showed that antibubbles can significantly improve drug delivery (p < 0.0001) and deliver the drug within the antibubbles. In conclusion antibubbles are a viable concept for ultrasound guided drug delivery.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (25)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....