Cold adaptation generates mutations associated with the growth of influenza B vaccine viruses
Reassortment
Seasonal influenza
Antigenic shift
H5N1 genetic structure
DOI:
10.1016/j.vaccine.2015.09.038
Publication Date:
2015-09-26T06:10:54Z
AUTHORS (5)
ABSTRACT
Seasonal inactivated influenza vaccines are usually trivalent or quadrivalent and are prepared from accredited seed viruses. Yields of influenza A seed viruses can be enhanced by gene reassortment with high-yielding donor strains, but similar approaches for influenza B seed viruses have been largely unsuccessful. For vaccine manufacture influenza B seed viruses are usually adapted for high-growth by serial passage. Influenza B antigen yields so obtained are often unpredictable and selection of influenza B seed viruses by this method can be a rate-limiting step in seasonal influenza vaccine manufacture. We recently have shown that selection of stable cold-adapted mutants from seasonal epidemic influenza B viruses is associated with improved growth. In this study, specific mutations were identified that were responsible for growth enhancement as a consequence of adaptation to growth at lower temperatures. Molecular analysis revealed that the following mutations in the HA, NP and NA genes are required for enhanced viral growth: G156/N160 in the HA, E253, G375 in the NP and T146 in the NA genes. These results demonstrate that the growth of seasonal influenza B viruses can be optimized or improved significantly by specific gene modifications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....