Improving ICs reliability with high speed thermal mapping
0103 physical sciences
0202 electrical engineering, electronic engineering, information engineering
Analysis of aging and thermal stress; Failure analysis; Fault modeling; Power and thermal modeling; Reliability; Thermal analysis; Thermography; Voltage regulators; Software; Hardware and Architecture; Electrical and Electronic Engineering
02 engineering and technology
01 natural sciences
DOI:
10.1016/j.vlsi.2018.01.001
Publication Date:
2018-01-11T09:43:44Z
AUTHORS (5)
ABSTRACT
Abstract The power elements are the weak parts of integrated circuits (ICs), in fact, through these elements the power is usually dissipated as heat with unavoidable thermal and mechanical stress. On the contrary the logic parts of ICs stay at lower temperatures. This gives rise to two effects: the non-uniform generation of the heat across the die and the temperature gradients. Understanding these phenomena is very important to choose the right location of sensitive components, like thermal sensors, in order to improve reliability. As a consequence, the knowledge of the temporal evolution of the temperature distribution plays a very important role to improve both design and lifetime. Here we show how a single IR sensor based experimental setup is suitable to catch very fast thermal events performing high spatial resolution. We demonstrate the effectiveness of the method maps for three IC samples where an accurate thermal modeling for reliability has been obtained and validated, greatly improving the overall quality.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (10)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....