High-power non-perturbative laser delivery diagnostics at the final focus of 100-TW-class laser pulses

Quantum Physics Engineering laser diagnostics Physical Sciences 0103 physical sciences 530 laser stabilization 01 natural sciences 620 high-power lasers
DOI: 10.1017/hpl.2021.12 Publication Date: 2021-05-26T11:42:29Z
ABSTRACT
Abstract Controlling the delivery of multi-terawatt and petawatt laser pulses to final focus, both in position and angle, is critical to many laser applications such as optical guiding, laser–plasma acceleration, and laser-produced secondary radiation. We present an online, non-destructive laser diagnostic, capable of measuring the transverse position and pointing angle at focus. The diagnostic is based on a unique double-surface-coated wedged-mirror design for the final steering optic in the laser line, producing a witness beam highly correlated with the main beam. By propagating low-power kilohertz pulses to focus, we observed spectra of focus position and pointing angle fluctuations dominated by frequencies below 70 Hz. The setup was also used to characterize the excellent position and pointing angle correlation of the 1 Hz high-power laser pulses to this low-power kilohertz pulse train, opening a promising path to fast non-perturbative feedback concepts even on few-hertz-class high-power laser systems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (28)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....