SHMIP The subglacial hydrology model intercomparison Project
glaciological model experiments
glacier modelling
550
15. Life on land
01 natural sciences
6. Clean water
Environmental sciences
13. Climate action
Meteorology. Climatology
subglacial processes
8. Economic growth
GE1-350
ice-sheet modelling
QC851-999
glacier hydrology
0105 earth and related environmental sciences
DOI:
10.1017/jog.2018.78
Publication Date:
2018-10-24T06:24:03Z
AUTHORS (12)
ABSTRACT
ABSTRACTSubglacial hydrology plays a key role in many glaciological processes, including ice dynamics via the modulation of basal sliding. Owing to the lack of an overarching theory, however, a variety of model approximations exist to represent the subglacial drainage system. The Subglacial Hydrology Model Intercomparison Project (SHMIP) provides a set of synthetic experiments to compare existing and future models. We present the results from 13 participating models with a focus on effective pressure and discharge. For many applications (e.g. steady states and annual variations, low input scenarios) a simple model, such as an inefficient-system-only model, a flowline or lumped model, or a porous-layer model provides results comparable to those of more complex models. However, when studying short term (e.g. diurnal) variations of the water pressure, the use of a two-dimensional model incorporating physical representations of both efficient and inefficient drainage systems yields results that are significantly different from those of simpler models and should be preferentially applied. The results also emphasise the role of water storage in the response of water pressure to transient recharge. Finally, we find that the localisation of moulins has a limited impact except in regions of sparse moulin density.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (87)
CITATIONS (56)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....