In Situ-Formed PdFe Nanoalloy and Carbon Defects in Cathode for Synergic Reduction–Oxidation of Chlorinated Pollutants in Electro-Fenton Process
0211 other engineering and technologies
Hydrogen Peroxide
02 engineering and technology
7. Clean energy
Carbon
Electrolysis
Water Purification
13. Climate action
Environmental Pollutants
Electrodes
Oxidation-Reduction
Water Pollutants, Chemical
DOI:
10.1021/acs.est.9b05896
Publication Date:
2020-01-24T18:11:33Z
AUTHORS (8)
ABSTRACT
Complete dechlorination and mineralization of chlorophenols via the reduction-oxidation-mediated electro-Fenton process with a composite bulk cathode is first proposed. The in situ formation of a PdFe nanoalloy and carbon defects as key active sites is mutually induced during the formation of a carbon aerogel-based electrode. Specifically, the PdFe nanoalloy promotes the generation of [H]ads as reduction sites and improves the electron transfer via an electrical circuit, while the carbon defects selectively favor the 2e- oxygen reduction pathway. Notably, this work implies a novel electrocatalytic model for the formation of ·OH via (2 + 1)e- oxygen reduction by a consecutive reaction with carbon defects and a PdFe nanoalloy. Complete total organic carbon removal and dechlorination of 3-chlorophenol were performed after 6 h. The kinetic rate constant for removing haloacetamides (HAMs) in drinking water was 0.21-0.41 h-1, and the degradation efficiency was self-enhanced after electrolysis for 2 h because of the increased concentration of [H+]. The specific energy consumption was ∼0.55 W·h·g-1 at 100% removal of some HAMs, corresponding to a power consumption of 0.6-1.1 kW·h for complete dehalogenation per ton of drinking water in waterworks. Moreover, the PdFe alloy/CA exhibited extreme mechanical and electrochemical stability with limited iron (∼0.07 ppm) and palladium (0.02 ppm) leaching during the actual application.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (166)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....