Novel Pyrazole-4-acetohydrazide Derivatives Potentially Targeting Fungal Succinate Dehydrogenase: Design, Synthesis, Three-Dimensional Quantitative Structure–Activity Relationship, and Molecular Docking
0301 basic medicine
2. Zero hunger
0303 health sciences
Quantitative Structure-Activity Relationship
Fungicides, Industrial
Rhizoctonia
Molecular Docking Simulation
Succinate Dehydrogenase
Structure-Activity Relationship
03 medical and health sciences
Hydrazines
Fusarium
Pyrazoles
Botrytis
Plant Diseases
DOI:
10.1021/acs.jafc.1c03399
Publication Date:
2021-08-12T15:04:37Z
AUTHORS (8)
ABSTRACT
Succinate dehydrogenase inhibitors (SDHIs) have emerged in fungicide markets as one of the fastest-growing categories that are widely applied in agricultural production for crop protection. Currently, the structural modification focusing on the flexible amide link of SDHI molecules is being gradually identified as one of the innovative strategies for developing novel highly efficient and broad-spectrum fungicides. Based on the above structural features, a series of pyrazole-4-acetohydrazide derivatives potentially targeting fungal SDH were constructed and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, and Botrytis cinerea. Strikingly, the in vitro EC50 values of constructed pyrazole-4-acetohydrazides 6w against R. solani, 6c against F. graminearum, and 6f against B. cinerea were, respectively, determined as 0.27, 1.94, and 1.93 μg/mL, which were obviously superior to that of boscalid against R. solani (0.94 μg/mL), fluopyram against F. graminearum (9.37 μg/mL), and B. cinerea (1.94 μg/mL). Concurrently, the effects of the substituent steric, electrostatic, hydrophobic, and hydrogen-bond fields on structure-activity relationships were elaborated by the reliable comparative molecular field analysis and comparative molecular similarity index analysis models. Subsequently, the practical value of pyrazole-4-acetohydrazide derivative 6w as a potential SDHI was ascertained by the relative surveys on the in vivo anti-R. solani preventative efficacy, inhibitory effects against fungal SDH, and molecular docking studies. The present results provide an indispensable complement for the structural optimization of antifungal leads potentially targeting SDH.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (82)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....