Mushroom Carboxymethylated β-d-Glucan Functions as a Macrophage-Targeting Carrier for Iron Oxide Nanoparticles and an Inducer of Proinflammatory Macrophage Polarization for Immunotherapy

0301 basic medicine Mice 03 medical and health sciences Macrophages Interferon Regulatory Factors Animals Cytokines Magnetic Iron Oxide Nanoparticles Immunotherapy Agaricales Glucans 3. Good health
DOI: 10.1021/acs.jafc.2c01710 Publication Date: 2022-06-02T09:56:31Z
ABSTRACT
β-d-glucans have the potential of serving as both macrophage-targeted carriers and immune stimulators via inducing trained immunity in macrophages. In this study, a carboxymethylated β-glucan from mushroom sclerotium of Pleurotus tuber-regium (CMPTR) was combined with iron oxide nanoparticles (IONPs) to form nanocomplexes (CMPTR/IONPs) with particle size around 193 ± 7 nm, which could exert a concerted effect on inducing proinflammatory M1 phenotype macrophages for immunotherapy. This nanocomplex exhibited good stability and low cytotoxicity (over 80% cellular viability of RAW 264.7 and THP-1) and higher cellular uptake by murine macrophages compared with B16F10 cells (p < 0.05). CMPTR/IONPs could convert M2-like bone marrow-derived macrophages into M1 phenotypes with upregulated expression of pro-inflammatory cytokines (IL12 and TNF-α, p < 0.05) and reduced immune-suppressive cytokines (IL10 and TGF-β, p < 0.05). Such polarization was mediated by the combined signaling regulatory factors, including IONP-stimulated IRF5 and CMPTR-triggered TLRs-NF-κB pathways (p < 0.05). Accordingly, CMPTR could have a dual function as a macrophage-targeting carrier for IONPs and an immunostimulant to induce inflammatory M1 macrophage polarization for immunotherapy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (10)