Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates
13. Climate action
540
01 natural sciences
0104 chemical sciences
DOI:
10.1021/acs.jpclett.8b00959
Publication Date:
2018-05-22T15:04:34Z
AUTHORS (7)
ABSTRACT
We have explored functionalizing metal catalysts with surface ligands as an approach to facilitate electrochemical carbon dioxide reduction reaction (CO2RR). To provide a molecular level understanding of the mechanism by which this enhancement occurs, we combine in situ spectroscopy analysis with an interpretation based on quantum mechanics (QM) calculations. We find that a surface ligand can play a critical role in stabilizing the chemisorbed CO2, which facilitates CO2 activation and leads to a 0.3 V decrease in the overpotential for carbon monoxide (CO) formation. Moreover, the presence of the surface ligand leads to nearly exclusive CO production. At -0.6 V (versus reversible hydrogen electrode, RHE), CO is the only significant product with a faradic efficiency of 93% and a current density of 1.9 mA cm-2. This improvement corresponds to 53-fold enhancement in turnover frequency compared with the Ag nanoparticles (NPs) without surface ligands.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (73)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....