Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation
Degradation
X-ray photoelectron spectroscopy
Phosphorene
Oxidation
Black phosphorus
Ambient stability
Fourier transform infrared spectroscopy
02 engineering and technology
2D materials
0210 nano-technology
7. Clean energy
DOI:
10.1021/acs.langmuir.8b04190
Publication Date:
2019-01-14T05:50:23Z
AUTHORS (7)
ABSTRACT
Black phosphorus (BP) is emerging as a promising candidate for electronic, optical, and energy storage applications. However, its poor ambient stability remains a critical challenge. Evaluation of few-layer liquid-exfoliated BP during ambient exposure using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy allows its surface chemistry to be investigated. Oxidation of liquid-exfoliated few-layer BP initially occurs through nonbridging oxide species, which convert to bridging oxide species after ambient exposure. We demonstrate the instability of these bridging oxide species, which undergo hydrolysis to form volatile phosphorus oxides and evaporate from the BP surface. FTIR spectroscopy, scanning transmission electron microscopy, and atomic force microscopy were used to confirm the formation of liquid oxides through a continuous oxidation cycle that results in the decomposition of BP. Furthermore, we show that the instability of few-layer BP originates from the formation of bridging oxide species.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (51)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....