A Novel Organic Phosphonate Additive Induced Stable and Efficient Perovskite Solar Cells with Efficiency over 24% Enabled by Synergetic Crystallization Promotion and Defect Passivation
Passivation
Carrier lifetime
Phosphonate
Crystal (programming language)
Hysteresis
DOI:
10.1021/acs.nanolett.3c01769
Publication Date:
2023-09-25T18:15:19Z
AUTHORS (9)
ABSTRACT
Defect passivation is crucial to enhancing the performance of perovskite solar cells (PSCs). In this study, we successfully synthesized a novel organic compound named DPPO, which consists double phosphonate group. Subsequently, incorporated DPPO into solution. The presence P═O group interacting with undercoordinated Pb2+ yielded film superior crystallinity, greater crystal orientation, and smoother surface. Additionally, addition can passivate defect states enhance upper layer energy level alignment, will improve carrier extraction prevent nonradiative recombination. Consequently, an impressive champion efficiency 24.24% was achieved minimized hysteresis. Furthermore, DPPO-modified PSCs exhibit enhanced durability when exposed ambient conditions, maintaining 95% initial for 1920 h at average relative humidity (RH) 30%.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (68)
CITATIONS (43)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....