Lead-Free Cs2AgBiBr6/TiO2 S-Scheme Heterojunction for Efficient Photocatalytic Antibiotic Rifampicin Degradation

DOI: 10.1021/acs.nanolett.4c03648 Publication Date: 2024-09-27T12:10:12Z
ABSTRACT
Exploring efficient and stable halide perovskite-based photocatalysts is a great challenge due to the balance between the photocatalytic performance, toxicity, and intrinsic chemical instability of the materials. Here, the environmentally friendly lead-free perovskite Cs2AgBiBr6 confined in the mesoporous TiO2 crystal matrix has been designed to enhance the charge carrier extraction and utilization for efficient photocatalytic rifampicin degradation. The as-prepared Cs2AgBiBr6/TiO2 catalyst was stable in air for over 500 days. An S-scheme heterojunction was formed between the (004) plane of Cs2AgBiBr6 and the (101) plane of TiO2 through the Bi-O-Br bonds. The built-in electric field at the interface efficiently promoted the photoinduced charge separation and carrier extraction. The Cs2AgBiBr6/TiO2-200 showed a 92.83% degradation efficiency of rifampicin within 80 min under simulated sunlight illumination (AM 1.5G 100 mW cm-2). This work offers an effective way for the construction of halide perovskite-based photocatalysts with high photocatalytic performance, good stability, and low toxicity simultaneously.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (39)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....