Color-Tunable Lead Halide Perovskite Single-Mode Chiral Microlasers with Exceptionally High glum
DOI:
10.1021/acs.nanolett.4c03838
Publication Date:
2024-10-03T19:02:59Z
AUTHORS (10)
ABSTRACT
Chiral microlasers hold great promise for optoelectronics from integrated photonic devices to high-density quantum information processing. Despite significant progress in lead-halide perovskite emitters, chiral lasing with high dissymmetry factors (glum) has not yet been realized. Here, we demonstrate chiral single-mode microlasers with exceptional stability and tunable emission across the visible range by combining CsPbClxBr3-x perovskite microrods (MRs) with a cholesteric liquid crystal (CLC) layer. The MRs lase via a whispering gallery mode (WGM) microcavity and confer chirality through the encapsulated CLC layer, thus exhibiting circularly polarized lasing with dissymmetry factors reaching 1.62. Importantly, we demonstrate wavelength-tunable high dissymmetry chiral lasers in a broad spectral range by tuning the halide composition and using CLC layers with the desired photonic bandgap (PBG). This facile approach to generate chiral lasing not only is applicable to semiconductor nano- and microcrystals but also paves the way for potential integration into nanoscale photonic devices.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....