Strategy for Using Electrolyte Additives to Regulate Zinc-Ion Battery Anode Interfaces via Tautomerism

DOI: 10.1021/acs.nanolett.5c00802 Publication Date: 2025-03-14T13:50:22Z
ABSTRACT
The performance of zinc-ion batteries (ZIBs) is often hindered by issues such as dendrite formation, hydrogen evolution, and limited cycling stability. 1,3-Dihydroxyacetone (DHA) not only stabilizes the anode modulating anode/electrolyte interface (AEI) but also enhances electrochemical battery through its spontaneous reversible keto-enol tautomerization, reducing concentration gradient on surface. Using a combination DFT calculations experimental characterization, regulation hydrated Zn2+ structure adsorption at AEI this additive investigated. Overall, incorporating DHA extends stability Zn||Zn symmetric to 400 h, even depth discharge 56.7% (DOD). Zn||VNNC full exhibit stable for 700 cycles 5 A g-1 with low N/P ratio (2.69), while Zn||AC capacitors (ZICs) significantly enhanced. This study evaluates potential in ZIBs dynamic characteristics molecular structures.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....