Effective Dark Current Suppression for High-Detectivity Organic Near-Infrared Photodetectors Using a Non-Fullerene Acceptor
BHJ-type NIR OPDs
Chemical Sciences not elsewhere classified
Science Policy
PNIR
NIR OPDs
Non-Fullerene Acceptor Near-infrared
nm
01 natural sciences
0104 chemical sciences
tailorable light absorption property
Space Science
High-Detectivity Organic Near-Infra.
high-detectivity NIR OPDs
non-fullerene acceptor
Medicine
ITIC
Molecular Biology
Cancer
Biological Sciences not elsewhere classified
DOI:
10.1021/acsami.0c22808
Publication Date:
2021-02-24T11:48:19Z
AUTHORS (9)
ABSTRACT
Near-infrared organic photodetectors (NIR OPDs) have attracted considerable attention because of their inherent advantages such as a tailorable light absorption property, low-cost fabrication, compatibility with flexible substrates, and room-temperature operation. In particular, the development of NIR detection between 900 and 950 nm is crucial for noise-free communication in ambient environments. In this work, we demonstrate high-detectivity NIR OPDs at 900-950 nm by employing a non-fullerene acceptor (ITIC) used with an NIR-absorbing conjugated polymer (PNIR) for bulk heterojunction (BHJ), which significantly suppressed dark current. Systemic characterizations including electrical, structural, and morphological analyses revealed that ITIC effectively reduces charge recombination during the operation of the OPDs under NIR illumination, resulting in a dark current reduction and high detectivity of over 3.2 × 1011 Jones at 900-950 nm. The results presented here demonstrate that utilizing a non-fullerene acceptor for BHJ-type NIR OPDs is evidently a strategic approach for the simultaneous achievement of the low dark current and high-detectivity of NIR OPDs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (22)
CITATIONS (43)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....