CQDs-Cross-Linked Conductive Collagen/PAA-Based Nanocomposite Organohydrogel Coupling Flexibility with Multifunctionality for Dual-Modal Sensing of Human Motions
Biocompatibility
DOI:
10.1021/acsami.4c00848
Publication Date:
2024-04-27T12:58:16Z
AUTHORS (4)
ABSTRACT
Conductive hydrogels are ideal materials for intelligent medical devices, human-machine interfaces, and flexible bioelectrodes due to their adjustable mechanical properties electrical responsiveness, whereas it is still a great challenge achieve the integration of excellent flexibility biocompatibility into one hydrogel sensor while also incorporating self-healing, self-adhesion, environmental tolerance, antimicrobial properties. Here, nanocomposite conductive organohydrogel was constructed by using collagen (Col), alginate-derived carbon quantum dots (OSA-CQDs), poly(acrylic acid) (PAA), ethylene glycol reduced AgNPs, Fe3+ ions. Depending on OSA-CQDs with multiple chemical binding sites high specific surface area as cross-linkers, coupling highly biologically active Col chains PAA serving an energy dissipation module, resulting exhibited (795% strain, 193 kPa strength), cell compatibility (>95% survival rate), self-healing efficiency (HE = 79.5%), antifreezing (−20 °C), moisturizing (>120 h), repeatable adhesion (strength >20 kPa, times >10), inhibitory activity against Escherichia coli Staphylococcus aureus (9 21.5 cm2), conductivity, strain sensitivity (σ 1.34 S/m, gauge factor (GF) 11.63). Based all-in-one multifunction, can collaboratively adapt multimode sensing electrophysiological realize wireless real-time monitoring human activities physiological health. Therefore, this work provides new common platform design next-generation hydrogel-based smart wearable sensors.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....