Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission

DOI: 10.1021/acsami.4c17863 Publication Date: 2025-01-29T14:25:31Z
ABSTRACT
Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from multilevel heterogeneous structures biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, low ratio was fabricated through a water-induced phase separation coordination cross-linking strategy. A dense architecture developed by integration of "rigid" quadridentate carboxyl-Zr4+ bonds "soft" hydrophobic unit-rich regions featuring π-π stacking cation-π interactions into hydrogels. This unique structural design facilitated progressive breaking cross-links within network to under external loads, effectively dissipating energy imparting hydrogels exceptional characteristics, evidenced strength 1.42 MPa, complete self-recovery 3 min. Simultaneously, dynamic synergistically conferred augmented elastic retractive forces on enhancing density, providing prominent capabilities water (with only -2.49%), solutions diverse pH (1-9), seawater. Moreover, manifested favorable strain-sensitivity (gauge factor up 2.45) frequency response virtue collaborative contribution ions (Cl- Zr4+). Consequently, were utilized assemble underwater capacity transmit information using Morse code. bioinspired methodology achieved desired mechanical, swelling-resistant, performance hydrogels, contributing innovative insights toward advancement technology.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (1)