Inkjet-Printed Quantum Dot Light-Emitting Diodes with an Air-Stable Hole Transport Material
02 engineering and technology
0210 nano-technology
DOI:
10.1021/acsami.7b00615
Publication Date:
2017-04-18T09:56:25Z
AUTHORS (10)
ABSTRACT
High-efficiency quantum dot light-emitting diodes (QLEDs) were fabricated using inkjet printing with a novel cross-linkable hole transport material N,N'-(9,9'-spirobi[fluorene]-2,7-diylbis[4,1-phenylene])bis(N-phenyl-4'-vinyl-[1,1'-biphenyl]-4-amine) (SDTF). The cross-linked SDTF film has excellent solvent resistance, high thermal stability, and the highest occupied molecular orbital (HOMO) level of -5.54 eV. The inkjet-printed SDTF film is very smooth and uniform, with roughness as low as 0.37 nm, which is comparable with that of the spin-coated film (0.28 nm). The SDTF films stayed stable without any pinhole or grain even after 2 months in air. All-solution-processed QLEDs were fabricated; the maximum external quantum efficiency of 5.54% was achieved with the inkjet-printed SDTF in air, which is comparable to that of the spin-coated SDTF in a glove box (5.33%). Electrical stabilities of both spin-coated and inkjet-printed SDTF at the device level were also investigated and both showed a similar lifetime. The study demonstrated that SDTF is very promising as a printable hole transport material for making QLEDs using inkjet printing.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (46)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....