General Strategy to Fabricate Highly Filled Microcomposite Hydrogels with High Mechanical Strength and Stiffness

02 engineering and technology 0210 nano-technology 01 natural sciences 0104 chemical sciences
DOI: 10.1021/acsami.7b17689 Publication Date: 2018-01-08T16:37:18Z
ABSTRACT
Conventional synthetic hydrogels are intrinsically soft and brittle, which severely limits the scope of their applications. A variety of approaches have been proposed to improve the mechanical strength of hydrogels. However, a facile and ubiquitous strategy to prepare hydrogels with high mechanical strength and stiffness is still a challenge. Here, we report a general strategy to prepare highly filled microcomposite hydrogels with high mechanical performance using an ultrasonic assisted strategy. The microparticles were dispersed in the polymer network evenly, resulting in homogeneous and closely packed structures. The as-prepared hydrogels with extraordinary mechanical performance can endure compressive stress up to 20 MPa (at 75% strain) and exhibit high stiffness (elastic modulus is around 18 MPa). By using our comprehensive strategy, different hydrogels can enhance their mechanical strength and stiffness by doping various microparticles, leading to a much wider variety of applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (19)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....