Humidity-Independent Gas Sensors Using Pr-Doped In2O3 Macroporous Spheres: Role of Cyclic Pr3+/Pr4+ Redox Reactions in Suppression of Water-Poisoning Effect
13. Climate action
02 engineering and technology
0210 nano-technology
DOI:
10.1021/acsami.9b06386
Publication Date:
2019-06-25T14:09:43Z
AUTHORS (8)
ABSTRACT
Pure and 3-12 at. % Pr-doped In2O3 macroporous spheres were fabricated by ultrasonic spray pyrolysis and their acetone-sensing characteristics under dry and humid conditions were investigated to design humidity-independent gas sensors. The 12 at. % Pr-doped In2O3 sensor exhibited approximately the same acetone responses and sensor resistances at 450 °C regardless of the humidity variation, whereas the pure In2O3 exhibited significant deterioration in gas-sensing characteristics upon the change in the atmosphere, from dry to humid (relative humidity: 80%). Moreover, the 12 at. % Pr-doped In2O3 sensor exhibited a high response to acetone with negligible cross responses to interfering gases (NH3, CO, benzene, toluene, NO2, and H2) under the highly humid atmosphere. The mechanism for the humidity-immune gas-sensing characteristics was investigated by X-ray photoelectron and diffuse reflectance infrared Fourier transform spectroscopies together with the phenomenological gas-sensing results and discussed in relation with Pr3+/Pr4+ redox pairs, regenerative oxygen adsorption, and scavenging of hydroxyl groups.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (150)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....