Modular Synthetic Routes to Fluorine-Containing Halogenated Phenazine and Acridine Agents That Induce Rapid Iron Starvation in Methicillin-Resistant Staphylococcus aureus Biofilms
Methicillin-Resistant Staphylococcus aureus
0301 basic medicine
03 medical and health sciences
Biofilms
Iron
Acridines
Phenazines
Fluorine
antibacterial agents; biofilm-eradicating agents; chemical synthesis; halogenated acridine; halogenated phenazine; iron starvation;
Anti-Bacterial Agents
3. Good health
DOI:
10.1021/acsinfecdis.1c00402
Publication Date:
2022-01-28T15:01:52Z
AUTHORS (9)
ABSTRACT
During infection, bacteria use an arsenal of resistance mechanisms to negate antibiotic therapies. In addition, pathogenic bacteria form surface-attached biofilms bearing enriched populations of metabolically dormant persister cells. Bacteria develop resistance in response to antibiotic insults; however, nonreplicating biofilms are innately tolerant to all classes of antibiotics. As such, molecules that can eradicate antibiotic-resistant and antibiotic-tolerant bacteria are of importance. Here, we report modular synthetic routes to fluorine-containing halogenated phenazine (HP) and halogenated acridine (HA) agents with potent antibacterial and biofilm-killing activities. Nine fluorinated phenazines were rapidly accessed through a synthetic strategy involving (1) oxidation of fluorinated anilines to azobenzene intermediates, (2) SNAr with 2-methoxyaniline, and (3) cyclization to phenazines upon treatment with trifluoroacetic acid. Five structurally related acridine heterocycles were synthesized using SNAr and Buchwald-Hartwig approaches. From this focused collection, phenazines 5g, 5h, 5i, and acridine 9c demonstrated potent antibacterial activities against Gram-positive pathogens (MIC = 0.04-0.78 μM). Additionally, 5g and 9c eradicated Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis biofilms with excellent potency (5g, MBEC = 4.69-6.25 μM; 9c, MBEC = 4.69-50 μM). Using real-time quantitative polymerase chain reaction (RT-qPCR), 5g, 5h, 5i, and 9c rapidly induce the transcription of iron uptake biomarkers isdB and sbnC in methicillin-resistant S. aureus (MRSA) biofilms, and we conclude that these agents operate through iron starvation. Overall, fluorinated phenazine and acridine agents could lead to ground-breaking advances in the treatment of challenging bacterial infections.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (73)
CITATIONS (20)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....