NiFe-Based Semi-MOF Embedded by Sulfide Particles Reconstructed a Three-Layer Sandwich Structure for Alkaline Overall Water Splitting

Overpotential
DOI: 10.1021/acssuschemeng.3c07704 Publication Date: 2024-03-01T15:48:17Z
ABSTRACT
A metal–organic framework (MOF) embedded by transition metal sulfide (TMS) particles is one of the promising electrocatalyst candidates for overall water splitting (OWS) due to large surface area and abundant active sites from MOF precursor, as well tunable electronic structure higher intrinsic conductivity TMS. More importantly, its self-restructuring under alkaline conditions will lead chemical composition phase evolution catalyst surface, which source further enhanced catalytic activity. semi-MOF (labeled Co@Ni/Fe-MS/MOF) with semisacrificial template a TMS particle guest was designed exercisable universal heteroatomic Co doping partial vulcanization. The TMS/MOF heterostructure establishes an ideal bridge electron transfer. Simultaneously, dopant synergistic effect multiple also effectively regulate charge environment around sites, jointly improve adsorption/desorption kinetics reaction intermediates. As result, Co@Ni/Fe-MS/MOF exhibits distinguished overpotential (η10 = 229 mV OER, η10 174 HER) Tafel slope (52.37/114.35 dec–1 OER/HER), unrivaled long-term durability (80 h OWS). Moreover, two-electrode ∥ cell illustrates small voltage 1.54 V achieve power 10 mA cm–2. Impressively, this superior OER property comes three-layer sandwich restructured hybrid semi-MOFs in true sites. This work aspired catalyst, induce effects, shed light on preparation materials heterogeneous interface engineering, evolution.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (79)
CITATIONS (21)