Improvement of Stability and Cell Adhesion Properties of Polyelectrolyte Multilayer Films by Chemical Cross-Linking

Microscopy, Confocal Viscosity 02 engineering and technology Elasticity Solutions Cross-Linking Reagents Drug Stability Ethyldimethylaminopropyl Carbodiimide Cell Line, Tumor Spectroscopy, Fourier Transform Infrared Cell Adhesion Humans Polylysine Tissue Adhesives Hyaluronic Acid 0210 nano-technology
DOI: 10.1021/bm0342281 Publication Date: 2004-03-08T05:30:06Z
ABSTRACT
Poly(L-lysine)/hyaluronan (PLL/HA) films were chemically cross-linked with a water soluble carbodiimide (EDC) in combination with a N-hydroxysulfo-succinimide (NHS) to induce amide formation. Fourier transform infrared spectroscopy confirms the conversion of carboxylate and ammonium groups into amide bonds. Quartz crystal microbalance-dissipation reveals that the cross linking reaction is accompanied by a change in the viscoelastic properties of the films leading to more rigid films. After the cross-linking reaction, both positively and negatively ending films exhibit a negative zeta potential. It is shown by fluorescence recovery after photobleaching measured by confocal laser scanning microscopy that cross-linking dramatically reduces the diffusion of the PLL chains in the network. Cross linking also renders the films highly resistant to hyaluronidase, an enzyme that naturally degrades hyaluronan. Finally, the adhesion of chondrosarcoma cells on the films terminating either with PLL or HA is also investigated. Whereas the non cross-linked films are highly resistant to cell adhesion, the cells adhere and spread well on the cross-linked films.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (66)
CITATIONS (381)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....