Mechanism of Ionic Recognition by Polymer-Supported Reagents: Immobilized Tetramethylmalonamide and the Complexation of Lanthanide Ions
Ions
Organometallic Compounds
Indicators and Reagents
Polyvinyls
Ligands
Amides
Lanthanoid Series Elements
01 natural sciences
0104 chemical sciences
DOI:
10.1021/ic901813t
Publication Date:
2010-01-05T17:42:19Z
AUTHORS (2)
ABSTRACT
The mechanism of ionic recognition by polymer-supported reagents is probed with cross-linked polystyrene modified with tetramethylmalonamide (TMMA) ligands. The substrates are lanthanide ions in 0.001-8 M HCl and HNO(3) solutions. The results fall into three regions of acid concentration: low, mid, and high. In HCl, distribution coefficients are low in 0.001 to 2 M, increase in 4 and 6 M, and then decrease in 8 M HCl. In the low-acid region, the metal ion remains with its waters of hydration and does not coordinate to the carbonyl oxygens. As the acid concentration exceeds 2 M, protonation of the amide occurs to form an iminium moiety, electrostatically attracting the anionic lanthanide complex through ion-exchange and releasing waters of hydration. At high acid concentration, the apparent affinity decreases due to competition by the large excess of chloride ions for the ion-exchange sites. The affinity sequence in 6 M HCl is Tb > Dy > Eu > Gd > Ho > Sm > Er > Tm > Yb > Lu > Nd > Ce > La. The TMMA-Ln interaction is due to recognition since there is a point of maximum affinity across the series rather than a monotonic trend. The trends are comparable in HNO(3). A comparison of the distribution coefficients at the maxima (6 M HCl and 4 M HNO(3)) shows nitrate to have greater values than chloride due to a hydration effect, as also indicated by results from H(2)SO(4).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (60)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....