Effect of Alkyl Chain Length in Anions on Thermodynamic and Surface Properties of 1-Butyl-3-methylimidazolium Carboxylate Ionic Liquids

02 engineering and technology 0204 chemical engineering
DOI: 10.1021/ie201345t Publication Date: 2012-01-27T11:40:11Z
ABSTRACT
Carboxylate-anion-based imidazolium ionic liquids (ILs) are powerful solvents for cellulose and lignin. However, little is known about their fundamental physicochemical properties. In this work, 1-butyl-3-methylimidazolium carboxylate ILs 1-butyl-3-methylimidazolium formate ([C4mim][HCOO]), acetate ([C4mim][CH3COO]), propionate ([C4mim][CH3CH2COO]), and butyrate ([C4mim][CH3(CH2)2COO]), in which the alkyl chain length in the anions is being varied in contrast to the more usual studies where alkyl chain length in the cations is varied, have been synthesized and their densities and surface tensions have been determined experimentally at different temperatures. By using these data, the molar volume, isobaric expansivity, standard entropy, lattice energy, surface excess entropy, vaporization enthalpy, and Hildebrand solubility parameter have been estimated for these ILs. From the analysis of structure–property relationship, the effect of alkyl chain length in the anions on these physicochemical properties of ...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (75)