Lattice Strain and Schottky Junction Dual Regulation Boosts Ultrafine Ruthenium Nanoparticles Anchored on a N-Modified Carbon Catalyst for H2 Production

Overpotential
DOI: 10.1021/jacs.2c09613 Publication Date: 2022-10-12T19:48:57Z
ABSTRACT
Ruthenium-based materials are considered great promising candidates to replace Pt-based catalysts for hydrogen production in alkaline conditions. Herein, we adopt a facile method rationally design neoteric Schottky catalyst which uniform ultrafine ruthenium nanoparticles featuring lattice compressive stress supported on nitrogen-modified carbon nanosheets (Ru NPs/NC) efficient evolution reaction (HER). Lattice strain and junction dual regulation ensures that the Ru NPs/NC with an appropriate nitrogen content displays superb H2 media. Particularly, NPs/NC-900 1.3% attractive activity durability HER low overpotential of 19 mV at 10 mA cm-2 1.0 M KOH electrolyte. The situ X-ray absorption fine structure measurements indicate low-valence nanoparticle shrinking Ru-Ru bond acts as catalytic active site during process. Furthermore, multiple spectroscopy analysis density functional theory calculations demonstrate tunes electron adsorption center, thus enhancing activity. This strategy provides novel concept advanced electrocatalysts production.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (61)
CITATIONS (215)