Palladium-Catalyzed Oxidative Allene–Allene Cross-Coupling

DOI: 10.1021/jacs.4c14607 Publication Date: 2025-01-23T15:55:06Z
ABSTRACT
[Image: see text] Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon–carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner. Specifically, the selective allenic C–H activation of an allene with an allyl substituent as the assisting group gives rise to a vinylpalladium intermediate, which reacts with a less substituted allene in a carbopalladation, followed by a β-hydride elimination. The reaction sequence leads to a new C(sp(2))–C(sp(2)) bond between two diene units. Remarkably, this protocol provides an unconventional strategy for the site-selective and stereoselective construction of C(vinyl)–C(vinyl) bonds without using any halogenated and organometallics olefin precursors. Furthermore, the practical transformations of the synthesized [4]dendralenes and late-stage modifications of biorelevant molecules demonstrate their potential in the total synthesis of natural products and drug discovery.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (67)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....