Origin and Structural Characteristics of Tri-coordinated Extra-framework Aluminum Species in Dealuminated Zeolites
01 natural sciences
0104 chemical sciences
DOI:
10.1021/jacs.8b04819
Publication Date:
2018-08-02T15:59:32Z
AUTHORS (11)
ABSTRACT
Post-synthetic dealumination treatment is a common tactic adopted to improve the catalytic performance of industrialized zeolitic catalysts through enhancements in acidity and stability. However, among the possible extra-framework aluminum (EFAL) species in dealuminated zeolites such as Al3+, Al(OH)2+, Al(OH)2+, AlO+, AlOOH, and Al(OH)3, the presence of tri-coordinated EFAL-Al3+ species, which exhibit large quadrupolar effect due to the lack of hydrogen-bonding species, was normally undetectable by conventional one- and two-dimensional 1H and/or 27Al solid-state nuclear magnetic resonance (SSNMR) techniques. By combining density functional theory (DFT) calculations with experimental 31P SSNMR using trimethylphosphine (TMP) as the probe molecule, we report herein a comprehensive study to certify the origin, fine structure, and possible location of tri-coordinated EFAL-Al3+ species in dealuminated HY zeolite. The spatial proximities and synergies between the Brønsted and various Lewis acid sites were clearly identified, and the origin for the observed EFAL-Al3+ species with ultra-strong Lewis acidity was deduced to be at the expense of adjacent Brønsted acid sites. The excellent performance of such tri-coordinated EFAL species was furthermore confirmed by glucose isomerization reactions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (133)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....