Solute Rotation and Solvation Dynamics in a Room-Temperature Ionic Liquid

01 natural sciences 0104 chemical sciences
DOI: 10.1021/jp034231e Publication Date: 2003-06-12T05:38:00Z
ABSTRACT
Steady-state spectra, rotation times, and time-resolved emission spectra of the probe 4-aminophthalimide (4-AP) in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim+][PF6-]) were measured over the temperature range 298−355 K. The steady-state spectroscopy indicates that the solvation energetics of 4-AP in [bmim+][PF6-] are comparable to those of 4-AP in highly polar but aprotic solvents such as dimethylformamide and acetonitrile (π* ∼ 0.8, ∼ 0.4). The rotation of 4-AP in [bmim+][PF6-] and in more conventional aprotic solvents generally conforms to the expectations of simple hydrodynamic models. Other than the fact that [bmim+][PF6-] is highly viscous, nothing distinguishes the rotation of 4-AP in this ionic liquid from its rotation in more conventional polar aprotic solvents. Time-dependent emission spectra, recorded with an instrumental response of 25 ps, indicate that solvation dynamics in [bmim+][PF6-] occur in two well-separated time regimes. Near to room temperature, the obser...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (61)
CITATIONS (283)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....