Nonmonotonic Size-Dependent Carrier Mobility in PbSe Nanocrystal Arrays

01 natural sciences 0104 chemical sciences
DOI: 10.1021/jz300035t Publication Date: 2012-02-27T21:43:33Z
ABSTRACT
On the basis of a tight binding system-bath model, we investigated carrier mobility of PbSe nanocrystal (NC) arrays as a function of NC size and inter-NC separation. The size-dependent trend of calculated carrier mobilities are in excellent agreement with recent experimental measurements: electron mobility increased up to NC diameter of ∼6 nm and then decreased for larger NCs, whereas hole mobility showed a monotonic size-dependency. Carrier mobility increase was associated with reduced activation energy that governs charge-transfer processes. In contrast, the decrease in electron mobility for large NCs was found to be due to smaller electronic coupling. Control of inter-NC separation is crucial for mobility enhancement: the mobility may change by an order of magnitude when inter-NC separation varies by as little as 1 to 2 Å. We anticipate similar size-dependency of the mobility in other semiconductor NC arrays, although crossover diameter in which mobility reaches its maximum depends on the material.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (23)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....