Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin Film of Poly(N-vinylcarbazole) with Covalently Bonded C60
02 engineering and technology
540
0210 nano-technology
530
DOI:
10.1021/la061504z
Publication Date:
2006-08-04T22:29:35Z
AUTHORS (7)
ABSTRACT
A functional polymer (PVK-C60), containing carbazole moieties (electron donors) and fullerene moieties (electron-acceptors) in a molar ratio of about 100:1, was synthesized via covalent tethering of C60 to poly(N-vinylcarbazole) (PVK). The molecular structure and composition of PVK-C60 were characterized by FTIR, Raman, and UV-vis absorption spectroscopy, gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CyV). The C60-modified PVK exhibited an enhanced glass-transition temperature (Tg = 226 degrees C) and good solubility in organic solvents such as toluene, tetrahydrofuran, chloroform, and N,N-dimethylformamide (DMF). It could be cast into transparent films from solutions. For a thin film of PVK-C60 sandwiched between an indium tin oxide (ITO) electrode and an Al electrode (ITO/PVK-C60/Al), the device behaved as nonvolatile flash (rewritable) memory with accessible electronic states that could be written, read, and erased. The polymer memory exhibited an ON/OFF current ratio of more than 105 and write/erase voltages around -2.8 V/+3.0 V. Both the ON and OFF states were stable under a constant voltage stress of -1 V for 12 h and survived up to 108 read cycles at -1 V under ambient conditions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (168)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....