Strain Engineering of Nanowire Multi-Quantum Well Demonstrated by Raman Spectroscopy
0103 physical sciences
02 engineering and technology
0210 nano-technology
01 natural sciences
DOI:
10.1021/nl401306q
Publication Date:
2013-09-03T16:16:12Z
AUTHORS (6)
ABSTRACT
An analysis of the strain in an axial nanowire superlattice shows that the dominating strain state can be defined arbitrarily between unstrained and maximum mismatch strain by choosing the segment height ratios. We give experimental evidence for a successful strain design in series of GaN nanowire ensembles with axial InxGa1-xN quantum wells. We vary the barrier thickness and determine the strain state of the quantum wells by Raman spectroscopy. A detailed calculation of the strain distribution and LO phonon frequency shift shows that a uniform in-plane lattice constant in the nanowire segments satisfactorily describes the resonant Raman spectra, although in reality the three-dimensional strain profile at the periphery of the quantum wells is complex. Our strain analysis is applicable beyond the InxGa1-xN/GaN system under study, and we derive universal rules for strain engineering in nanowire heterostructures.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (34)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....