Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases.
Natural product
DOI:
10.1038/85029
Publication Date:
2002-07-26T08:48:04Z
AUTHORS (4)
ABSTRACT
Chalcone O-methyltransferase (ChOMT) and isoflavone O-methyltransferase (IOMT) are S-adenosyl-l-methionine (SAM) dependent plant natural product methyltransferases involved in secondary metabolism in Medicago sativa (alfalfa). Here we report the crystal structure of ChOMT in complex with the product S-adenosyl-l-homocysteine and the substrate isoliquiritigenin (4,2',4'-trihydroxychalcone) refined to 1.8 A as well as the crystal structure of IOMT in complex with the products S-adenosyl-l-homocysteine and isoformononetin (4'-hydroxy-7-methoxyisoflavone) refined to 1.4 A. These two OMTs constitute the first plant methyltransferases to be structurally characterized and reveal a novel oligomerization domain and the molecular determinants for substrate selection. As such, this work provides a structural basis for understanding the substrate specificity of the diverse family of plant OMTs and facilitates the engineering of novel activities in this extensive class of natural product biosynthetic enzymes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (275)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....