Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis

Male 0301 basic medicine Clinical Sciences Eye 03 medical and health sciences Clinical Research Antigens, Neoplasm Receptors Genetics 2.1 Biological and endogenous factors Humans Microphthalmos Exome Eye Abnormalities Antigens Aetiology Child Preschool Eye Disease and Disorders of Vision Genetics & Heredity High-Throughput Nucleotide Sequencing Infant Receptors, Interleukin-1 Pedigree Phenotype Amino Acid Substitution Peroxidases Child, Preschool Mutation Neoplasm Interleukin-1
DOI: 10.1038/ejhg.2014.119 Publication Date: 2014-06-18T10:22:30Z
ABSTRACT
We used exome sequencing to study a non-consanguineous family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia, hypotonia and developmental delays. Sanger sequencing verified two Peroxidasin (PXDN) mutations in both sibs--a maternally inherited, nonsense mutation, c.1021C>T predicting p.(Arg341*), and a paternally inherited, 23-basepair deletion causing a frameshift and premature protein truncation, c.2375_2397del23, predicting p.(Leu792Hisfs*67). We re-examined exome data from 20 other patients with structural eye defects and identified two additional PXDN mutations in a sporadic male with bilateral microphthalmia, cataracts and anterior segment dysgenesis--a maternally inherited, frameshift mutation, c.1192delT, predicting p.(Tyr398Thrfs*40) and a paternally inherited, missense substitution that was predicted to be deleterious, c.947 A>C, predicting p.(Gln316Pro). Mutations in PXDN were previously reported in three families with congenital cataracts, microcornea, sclerocornea and developmental glaucoma. The gene is expressed in corneal epithelium and is secreted into the extracellular matrix. Defective peroxidasin has been shown to impair sulfilimine bond formation in collagen IV, a constituent of the basement membrane, implying that the eye defects result because of loss of basement membrane integrity in the developing eye. Our finding of a broader phenotype than previously appreciated for PXDN mutations is typical for exome-sequencing studies, which have proven to be highly effective for mutation detection in patients with atypical presentations. We conclude that PXDN sequencing should be considered in microphthalmia with anterior segment dysgenesis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (46)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....