Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients
Male
0303 health sciences
DNA Mutational Analysis
Induced Pluripotent Stem Cells
Gene Expression
Cell Differentiation
Hematopoietic Stem Cells
Hematopoiesis
Immunophenotyping
Pedigree
3. Good health
Leukemia, Myeloid, Acute
Mice
03 medical and health sciences
Phenotype
Core Binding Factor Alpha 2 Subunit
Mutation
Animals
Humans
Female
Blood Platelet Disorders
Megakaryocytes
DOI:
10.1038/leu.2014.136
Publication Date:
2014-04-15T06:40:16Z
AUTHORS (21)
ABSTRACT
Somatic mutation of RUNX1 is implicated in various hematological malignancies, including myelodysplastic syndrome and acute myeloid leukemia (AML), and previous studies using mouse models disclosed its critical roles in hematopoiesis. However, the role of RUNX1 in human hematopoiesis has never been tested in experimental settings. Familial platelet disorder (FPD)/AML is an autosomal dominant disorder caused by germline mutation of RUNX1, marked by thrombocytopenia and propensity to acute leukemia. To investigate the physiological function of RUNX1 in human hematopoiesis and pathophysiology of FPD/AML, we derived induced pluripotent stem cells (iPSCs) from three distinct FPD/AML pedigrees (FPD-iPSCs) and examined their defects in hematopoietic differentiation. By in vitro differentiation assays, FPD-iPSCs were clearly defective in the emergence of hematopoietic progenitors and differentiation of megakaryocytes, and overexpression of wild-type (WT)-RUNX1 reversed most of these phenotypes. We further demonstrated that overexpression of mutant-RUNX1 in WT-iPSCs did not recapitulate the phenotype of FPD-iPSCs, showing that the mutations were of loss-of-function type. Taken together, this study demonstrated that haploinsufficient RUNX1 allele imposed cell-intrinsic defects on hematopoietic differentiation in human experimental settings and revealed differential impacts of RUNX1 dosage on human and murine megakaryopoiesis. FPD-iPSCs will be a useful tool to investigate mutant RUNX1-mediated molecular processes in hematopoiesis and leukemogenesis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (73)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....