Topological nodal-line fermions in spin-orbit metal PbTaSe2
fermion
theoretical model
Science
Q
500
momentum
surface area
theoretical study
530
01 natural sciences
experimental study
Article
0103 physical sciences
numerical model
symmetry
DOI:
10.1038/ncomms10556
Publication Date:
2016-02-02T10:52:27Z
AUTHORS (24)
ABSTRACT
AbstractTopological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (759)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....