Large anomalous Nernst effect at room temperature in a chiral antiferromagnet
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Materials Science (cond-mat.mtrl-sci)
FOS: Physical sciences
02 engineering and technology
01 natural sciences
7. Clean energy
0103 physical sciences
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0210 nano-technology
DOI:
10.1038/nphys4181
Publication Date:
2017-07-24T15:02:31Z
AUTHORS (8)
ABSTRACT
43 pages, 10 figures, 2 tables<br/>Temperature gradient in a ferromagnetic conductor may generate a spontaneous transverse voltage drop in the direction perpendicular to both magnetization and heat current. This anomalous Nernst effect (ANE) has been considered to be proportional to the magnetization, and thus observed only in ferromagnets, while recent theories indicate that ANE provides a measure of the Berry curvature at the Fermi energy $E_{\rm F}$. Here we report the observation of a large ANE at zero field in the chiral antiferromagnet Mn$_3$Sn. Despite a very small magnetization $\sim 0.002$ $��_{\rm B}/$Mn, the transverse Seebeck coefficient at zero field is $\sim 0.35~��$V/K at room temperature and reaches $\sim 0.6~��$V/K at 200 K, comparable with the maximum value known for a ferromagnetic metal. Our first-principles calculation reveals that the large ANE comes from a significantly enhanced Berry curvature associated with the Weyl points nearby $E_{\rm F}$. The ANE is geometrically convenient for the thermoelectric power generation, as it enables a lateral configuration of the modules to efficiently cover the heat source. Our observation of the large ANE in an antiferromagnet paves a way to develop a new class of thermoelectric material using topological magnets to fabricate an efficient, densely integrated thermopile.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (551)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....