A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion
Synaptotagmin 1
SNARE complex
Synaptotagmin I
Vesicle fusion
DOI:
10.1038/nsmb.2103
Publication Date:
2011-07-24T17:06:17Z
AUTHORS (11)
ABSTRACT
The crystal structure of complexin bound to a prefusion SNAREpin mimetic shows that the accessory helix extends away from the SNAREpin in an 'open' conformation, binding another SNAREpin and inhibiting its assembly, to clamp fusion. In contrast, the accessory helix in the postfusion complex parallels the SNARE complex in a 'closed' conformation. Here we use targeted mutations, FRET spectroscopy and a functional assay that reconstitutes Ca(2+)-triggered exocytosis to show that the conformational switch from open to closed in complexin is needed for synaptotagmin-Ca(2+) to trigger fusion. Triggering fusion requires the zippering of three crucial aspartate residues in the switch region (residues 64-68) of v-SNARE. Conformational switching in complexin is integral to clamp release and is probably triggered when its accessory helix is released from its trans-binding to the neighboring SNAREpin, allowing the v-SNARE to complete zippering and open a fusion pore.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (93)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....