Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy

Condensed Matter - Materials Science Condensed Matter - Mesoscale and Nanoscale Physics 530 Physics Science 0299 Other Physical Sciences ddc:530 Q Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences Spintronics 530 Physik 530 7. Clean energy Article 537 Mesoscale and Nanoscale Physics (cond-mat.mes-hall) Terahertz optics
DOI: 10.1038/s41467-018-05135-2 Publication Date: 2018-07-18T18:37:29Z
ABSTRACT
AbstractUnderstanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27 fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current js arises on the same ~100 fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering off the metal–insulator interface. Analytical modeling shows that the electrons’ dynamics are almost instantaneously imprinted onto js because their spins have a correlation time of only ~4 fs and deflect the ferrimagnetic moments without inertia. Applications in material characterization, interface probing, spin-noise spectroscopy and terahertz spin pumping emerge.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (79)
CITATIONS (147)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....