Two-dimensional electronic spectroscopy of bacteriochlorophyll a with synchronized dual mode-locked lasers

Models, Molecular Chemical Physics (physics.chem-ph) 0301 basic medicine Principal Component Analysis Time Factors Science Lasers Spectrum Analysis Q FOS: Physical sciences Signal Processing, Computer-Assisted Bacteriochlorophyll A Vibration Article 03 medical and health sciences Interferometry Physics - Chemical Physics Solvents Nanoparticles Electronics Density Functional Theory
DOI: 10.1038/s41467-020-19912-5 Publication Date: 2020-11-27T11:03:24Z
ABSTRACT
AbstractHow atoms and electrons in a molecule move during a chemical reaction and how rapidly energy is transferred to or from the surroundings can be studied with flashes of laser light. However, despite prolonged efforts to develop various coherent spectroscopic techniques, the lack of an all-encompassing method capable of both femtosecond time resolution and nanosecond relaxation measurement has hampered various applications of studying correlated electron dynamics and vibrational coherences in functional materials and biological systems. Here, we demonstrate that two broadband (>300 nm) synchronized mode-locked lasers enable two-dimensional electronic spectroscopy (2DES) study of chromophores such as bacteriochlorophyll a in condensed phases to measure both high-resolution coherent vibrational spectrum and nanosecond electronic relaxation. We thus anticipate that the dual mode-locked laser-based 2DES developed and demonstrated here would be of use for unveiling the correlation between the quantum coherence and exciton dynamics in light-harvesting protein complexes and semiconducting materials.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....