Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation

Technology ddc:600 Science Q 0211 other engineering and technologies 600 02 engineering and technology 7. Clean energy Article 0202 electrical engineering, electronic engineering, information engineering info:eu-repo/classification/ddc/600
DOI: 10.1038/s41467-022-29837-w Publication Date: 2022-04-27T10:03:29Z
ABSTRACT
AbstractAccurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2- Li(NiCoAl)O2positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (345)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....