High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts
QA76.75-76.765
TA401-492
Computer software
Materials of engineering and construction. Mechanics of materials
01 natural sciences
0104 chemical sciences
DOI:
10.1038/s41524-021-00605-6
Publication Date:
2021-08-20T10:03:20Z
AUTHORS (11)
ABSTRACT
AbstractTo accelerate the discovery of materials through computations and experiments, a well-established protocol closely bridging these methods is required. We introduce a high-throughput screening protocol for the discovery of bimetallic catalysts that replace palladium (Pd), where the similarities in the electronic density of states patterns were employed as a screening descriptor. Using first-principles calculations, we screened 4350 bimetallic alloy structures and proposed eight candidates expected to have catalytic performance comparable to that of Pd. Our experiments demonstrate that four bimetallic catalysts indeed exhibit catalytic properties comparable to those of Pd. Moreover, we discover a bimetallic (Ni-Pt) catalyst that has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides an opportunity for the catalyst discovery for the replacement or reduction in the use of the platinum-group metals.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (31)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....