Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning

Data Descriptor 550 http://aims.fao.org/aos/agrovoc/c_24420 Ecosystem ecology télédétection Science gestion des ressources naturelles utilisation des terres http://aims.fao.org/aos/agrovoc/c_35131 http://aims.fao.org/aos/agrovoc/c_36761 http://aims.fao.org/aos/agrovoc/c_9000100 [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] http://aims.fao.org/aos/agrovoc/c_5725 évaluation des ressources cartographie de l'occupation du sol apprentissage machine http://aims.fao.org/aos/agrovoc/c_1344 http://aims.fao.org/aos/agrovoc/c_37876 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_8334 Geography cartographie de l'utilisation des terres [SDE.IE]Environmental Sciences/Environmental Engineering Q http://aims.fao.org/aos/agrovoc/c_49834 http://aims.fao.org/aos/agrovoc/c_9000094 http://aims.fao.org/aos/agrovoc/c_331583 bassin versant http://aims.fao.org/aos/agrovoc/c_28019 système d'information géographique Environmental sciences E11 - Économie et politique foncières imagerie par satellite séquestration du carbone 526 [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] P31 - Levés et cartographie des sols http://aims.fao.org/aos/agrovoc/c_9000115 surveillance de l'environnement http://aims.fao.org/aos/agrovoc/c_4182 cartographie impact sur l'environnement U30 - Méthodes de recherche
DOI: 10.1038/s41597-024-03750-x Publication Date: 2024-08-23T11:03:37Z
ABSTRACT
Land Use and Land Cover (LULC) maps are important tools for environmental planning and social-ecological modeling, as they provide critical information for evaluating risks, managing natural resources, and facilitating effective decision-making. This study aimed to generate a very high spatial resolution (0.5 m) and detailed (21 classes) LULC map for the greater Mariño watershed (Peru) in 2019, using the MORINGA processing chain. This new method for LULC mapping consisted in a supervised object-based LULC classification, using the random forest algorithm along with multi-sensor satellite imagery from which spectral and textural predictors were derived (a very high spatial resolution Pléiades image and a time serie of high spatial resolution Sentinel-2 images). The random forest classifier showed a very good performance and the LULC map was further improved through additional post-treatment steps that included cross-checking with external GIS data sources and manual correction using photointerpretation, resulting in a more accurate and reliable map. The final LULC provides new information for environmental management and monitoring in the greater Mariño watershed. With this study we contribute to the efforts to develop standardized and replicable methodologies for high-resolution and high-accuracy LULC mapping, which is crucial for informed decision-making and conservation strategies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (76)
CITATIONS (2)