Generating high-resolution land use and land cover maps for the greater Mariño watershed in 2019 with machine learning
Data Descriptor
550
http://aims.fao.org/aos/agrovoc/c_24420
Ecosystem ecology
télédétection
Science
gestion des ressources naturelles
utilisation des terres
http://aims.fao.org/aos/agrovoc/c_35131
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_9000100
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
http://aims.fao.org/aos/agrovoc/c_5725
évaluation des ressources
cartographie de l'occupation du sol
apprentissage machine
http://aims.fao.org/aos/agrovoc/c_1344
http://aims.fao.org/aos/agrovoc/c_37876
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_8334
Geography
cartographie de l'utilisation des terres
[SDE.IE]Environmental Sciences/Environmental Engineering
Q
http://aims.fao.org/aos/agrovoc/c_49834
http://aims.fao.org/aos/agrovoc/c_9000094
http://aims.fao.org/aos/agrovoc/c_331583
bassin versant
http://aims.fao.org/aos/agrovoc/c_28019
système d'information géographique
Environmental sciences
E11 - Économie et politique foncières
imagerie par satellite
séquestration du carbone
526
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
P31 - Levés et cartographie des sols
http://aims.fao.org/aos/agrovoc/c_9000115
surveillance de l'environnement
http://aims.fao.org/aos/agrovoc/c_4182
cartographie
impact sur l'environnement
U30 - Méthodes de recherche
DOI:
10.1038/s41597-024-03750-x
Publication Date:
2024-08-23T11:03:37Z
AUTHORS (4)
ABSTRACT
Land Use and Land Cover (LULC) maps are important tools for environmental planning and social-ecological modeling, as they provide critical information for evaluating risks, managing natural resources, and facilitating effective decision-making. This study aimed to generate a very high spatial resolution (0.5 m) and detailed (21 classes) LULC map for the greater Mariño watershed (Peru) in 2019, using the MORINGA processing chain. This new method for LULC mapping consisted in a supervised object-based LULC classification, using the random forest algorithm along with multi-sensor satellite imagery from which spectral and textural predictors were derived (a very high spatial resolution Pléiades image and a time serie of high spatial resolution Sentinel-2 images). The random forest classifier showed a very good performance and the LULC map was further improved through additional post-treatment steps that included cross-checking with external GIS data sources and manual correction using photointerpretation, resulting in a more accurate and reliable map. The final LULC provides new information for environmental management and monitoring in the greater Mariño watershed. With this study we contribute to the efforts to develop standardized and replicable methodologies for high-resolution and high-accuracy LULC mapping, which is crucial for informed decision-making and conservation strategies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (76)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....