Unlocking the human inner ear for therapeutic intervention

0301 basic medicine Science Q R Oto-rino-laryngologi Temporal Bone Article Cochlea 03 medical and health sciences Otorhinolaryngology Ear, Inner Medicine Humans Cochlear Nerve Synchrotrons
DOI: 10.1038/s41598-022-22203-2 Publication Date: 2022-11-08T11:06:34Z
ABSTRACT
AbstractThe human inner ear contains minute three-dimensional neurosensory structures that are deeply embedded within the skull base, rendering them relatively inaccessible to regenerative therapies for hearing loss. Here we provide a detailed characterisation of the functional architecture of the space that hosts the cell bodies of the auditory nerve to make them safely accessible for the first time for therapeutic intervention. We used synchrotron phase-contrast imaging which offers the required microscopic soft-tissue contrast definition while simultaneously displaying precise bony anatomic detail. Using volume-rendering software we constructed highly accurate 3-dimensional representations of the inner ear. The cell bodies are arranged in a bony helical canal that spirals from the base of the cochlea to its apex; the canal volume is 1.6 μL but with a diffusion potential of 15 μL. Modelling data from 10 temporal bones enabled definition of a safe trajectory for therapeutic access while preserving the cochlea’s internal architecture. We validated the approach through surgical simulation, anatomical dissection and micro-radiographic analysis. These findings will facilitate future clinical trials of novel therapeutic interventions to restore hearing.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (22)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....