Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport

0303 health sciences Qa-SNARE Proteins Molecular Sequence Data Cathepsin A Golgi Apparatus Membrane Proteins Biological Transport Saccharomyces cerevisiae Models, Biological Precipitin Tests 3. Good health Fungal Proteins 03 medical and health sciences Munc18 Proteins Amino Acid Substitution Microscopy, Fluorescence Amino Acid Sequence Carrier Proteins SNARE Proteins Hydrophobic and Hydrophilic Interactions Conserved Sequence Glutathione Transferase Protein Binding
DOI: 10.1038/sj.emboj.7600410 Publication Date: 2004-09-16T08:48:01Z
ABSTRACT
Sec1/Munc18 (SM) proteins are central to intracellular transport and neurotransmitter release but their exact role is still elusive. Several SM proteins, like the neuronal N-Sec1 and the yeast Sly1 protein, bind their cognate t-SNAREs with high affinity. This has been thought to be critical for their function. Here, we show that various mutant forms of Sly1p and the Golgi-localized syntaxin Sed5p, which abolish their high-affinity interaction, are fully functional in vivo, indicating that the tight interaction of the two molecules per se is not relevant for proper function. Mutant Sly1p unable to bind Sed5p is excluded from core SNARE complexes, also demonstrating that Sly1p function is not directly coupled to assembled SNARE complexes thought to execute membrane fusion. We also find that wild-type Sly1p and mutant Sly1p unable to bind Sed5p directly interact with selected ER-to-Golgi and intra-Golgi nonsyntaxin SNAREs. The newly identified, direct interactions of the SM protein with nonsytaxin SNAREs might provide a molecular mechanism by which SNAREs can be activated to engage in pairing and assemble into fusogenic SNARE complexes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (71)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....