Unusual ferromagnetic critical behavior owing to short-range antiferromagnetic correlations in antiperovskite Cu1-xNMn3+x (0.1 ≤ x ≤ 0.4)
Condensed Matter - Strongly Correlated Electrons
Condensed Matter - Materials Science
0103 physical sciences
01 natural sciences
Article
DOI:
10.1038/srep07933
Publication Date:
2015-01-21T10:13:24Z
AUTHORS (11)
ABSTRACT
For ferromagnets, varying from simple metals to strongly correlated oxides,the critical behaviors near the Curie temperature (T(C)) can be grouped into several universal classes. In this paper, we report an unusual critical behavior in manganese nitrides Cu(1-x)NMn(3+x) (0.1 ≤ x ≤ 0.4). Although the critical behavior below T(C) can be well described by mean field (MF) theory, robust critical fluctuations beyond the expectations of any universal classes are observed above T(C) in x = 0.1. The critical fluctuations become weaker when x increases, and the MF-like critical behavior is finally restored at x = 0.4. In addition, the paramagnetic susceptibility of all the samples deviates from the Curie-Weiss (CW) law just above T(C). This deviation is gradually smeared as x increases. The short-range antiferromagnetic ordering above T(C) revealed by our electron spin resonance measurement explains both the unusual critical behavior and the breakdown of the CW law.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (52)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....