Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks
0103 physical sciences
01 natural sciences
Article
532
DOI:
10.1038/srep08702
Publication Date:
2015-03-03T10:20:45Z
AUTHORS (12)
ABSTRACT
AbstractUnderstanding and controlling fluids flow at the microscale is a matter of growing scientific and technological interest. Flow enhancements of water-based nanoparticle dispersions through microscale porous media are investigated through twelve hydrophilic sedimentary rocks with pore-throat radius between 1.2 and 10 μm, which are quantitatively explained with a simple model with slip length correction for Darcy flow. Both as wetting phase, water exhibited no-slip Darcy flow in all cores; however, flow enhancement of nanoparticle dispersions can be up to 5.7 times larger than that of water and it increases with the decreasing of pore-throat radius. The experimental data reveals characteristic slip lengths are of order 500 and 1000 nm for 3M® and HNPs-1 nanoparticles, respectively, independent of the lithology or nanoparticle concentration or shear rate. Meanwhile, the phenomenon of flow degradation is observed for HNPs-2 nanoparticles. These results explore the feasible application of using nanoparticle dispersions to control flow at the microscale.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (31)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....