A crossed molecular beam study on the reaction of methylidyne radicals [CH(X2Π)] with acetylene [C2H2(X1Σg+)]—competing C3H2+ H and C3H + H2channels

0103 physical sciences 01 natural sciences
DOI: 10.1039/c0cp01529f Publication Date: 2010-11-16T16:00:28Z
ABSTRACT
We carried out the crossed molecular beam reaction of ground state methylidyne radicals, CH(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), at a nominal collision energy of 16.8 kJ mol(-1). Under single collision conditions, we identified both the atomic and molecular hydrogen loss pathways forming C(3)H(2) and C(3)H isomers, respectively. A detailed analysis of the experimental data suggested the formation of c-C(3)H(2) (31.5 ± 5.0%), HCCCH/H(2)CCC (59.5 ± 5.0%), and l-HCCC (9.0 ± 2.0%). The reaction proceeded indirectly via complex formation and involved the unimolecular decomposition of long-lived propargyl radicals to form l-HCCC plus molecular hydrogen and HCCCH/H(2)CCC plus atomic hydrogen. The formation of c-C(3)H(2) was suggested to be produced via unimolecular decomposition of the cyclopropenyl radical, which in turn could be accessed via addition of the methylidyne radical to both carbon atoms of the acetylene molecule or after an initial addition to only one acetylenic carbon atom via ring closure. This investigation brings us closer to unraveling of the reaction of important combustion radicals-methylidyne-and the connected unimolecular decomposition of chemically activated propargyl radicals. This also links to the formation of C(3)H and C(3)H(2) in combustion flames and in the interstellar medium.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (125)
CITATIONS (53)